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 A Pioneer in Anaclastics

 Ibn Sahl on Burning Mirrors and Lenses

 By Roshdi Rashed*

 THE GEOMETRICAL STUDY OF LENSES was essential for the develop-
 ment of optics in the late sixteenth and early seventeenth centuries.' This

 study, which historians have seen as a turning point in the history of optics, was
 designated as either anaclastics or dioptrics. In writing the history of this
 chapter, it is common practice to give prominence to Kepler, some of Mer-
 senne's circle, Willebrord Snellius, and Descartes. Furthermore, the perceived
 modernity of the optics of this period is frequently explained, partially at least,
 by external reasons: a very modest technical advance in the construction of opti-
 cal instruments.

 A reading of the eleventh-century Book of Optics (Kitab al-Mancdir) by Ibn
 al-Haytham, however, whether in Arabic or in Latin translation, should have
 suggested to historians that research on anaclastics started well before the late

 sixteenth century. In Book 7 there is a study of the spherical diopter and the
 spherical lens.2 Furthermore, Ibn al-Haytham devoted an entire memoir to the
 burning sphere, whose scientific and historical importance is unanimously recog-
 nized. This work contains an examination of double refraction in the sphere and
 of related problems. Three centuries later, Kamal al-Din al-Farisi wrote a com-
 mentary on the work and used it for the first correct explanation of the rainbow.3

 Until now, however, historians have not constructed a clear picture of Ibn
 al-Haytham's research on lenses and of anaclastics in general. For example,

 * REHSEIS (Recherches Epistemologiques et Historiques sur les Sciences Exactes et les Institu-
 tions Scientifiques), Centre National de la Recherche Scientifique, 49 rue Mirabeau, 75016 Paris.

 I am grateful to Julia McVaugh and Frances Coulbom Kohler for all their help in improving the
 English as well as the presentation of this article.

 1 This topic is encountered in numerous works on the history of optics-in particular, in attempts
 to understand Descartes's contribution to the discipline. On this subject see Gaston Milhaud, Des-
 cartes savant (Paris: Felix Alcan, 1921), Ch. 5; and the commentary by Comelis de Waard to his
 edition of Correspondance du P. Marin Mersenne, religieux minime, 7 vols. (Paris: Presses Universi-
 taires de France, 1933-1962), Vol. 1: 1617-1627.

 2 The texts relating to lenses in Book 7 of Ibn al-Haytham's work have been edited, translated into
 French, and analyzed in Roshdi Rashed, Geome'trie et dioptrique au Xe siecle: Ibn Sahl, al-Qahi, et
 Ibn al-Haytham (Collection Sciences et Philosophie Arabes, Textes et ttudes) (Paris: Les Belles
 Lettres, forthcoming).

 3 Al-Farisi's commentary, which more or less reproduces Ibn al-Haytham's text, has been trans-
 lated freely into German by Eilhard Wiedemann and was recently reexamined by Matthias Schramm:
 see Wiedemann, "Beitrage zur Geschichte der Naturwissenschaften, XIX: Uber die Brechung des
 Lichtes in Kugeln nach Ibn al-Haytham und Kamal al-Din al-Farisi," Sitzungsberichte der physika-
 lische-medizinischen Sozietdt in Erlangen, 1910, 13:15-57; and Schramm, "Steps towards the Idea of
 Function: A Comparison between Eastern and Western Science in the Middle Ages," History of
 Science, 1965, 4:70-103. I have edited, translated into French, and analyzed al-Farisi's commentary,
 including Ibn al-Haytham's original text: see Rashed, Geometrie et dioptrique.

 ISIS, 1990, 81 : 464-491 464
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 IBN SAHL'S PIONEERING TREATISE 465

 Mustafa Nazif's masterful study of Ibn al-Haytham's investigations in optics is
 still unsurpassed, and his analyses have frequently been borrowed. But even

 Nazif, having ascertained that Ibn al-Haytham dealt with the study of lenses, was
 incapable of extracting the exact meaning of his research and concluded with

 some remarks that leave us perplexed.4 This weakness can be ascribed to several
 causes: incomplete knowledge of Arabic optics before Ibn al-Haytham; a dogma
 springing from this ignorance, according to which no one before him made effec-
 tive use of Ptolemy's Optics;5 and an underestimation of how much works on
 burning mirrors and instruments have contributed to the history of optics. The
 only predecessor of Ibn al-Haytham of any importance to be mentioned by his-
 torians is the tenth-century philosopher and scholar al-Kindi, but for his De as-
 pectibus rather than for his On Burning Mirrors. When historians analyze Ibn
 al-Haytham's dioptrics, they refer only to Ptolemy. The result is that Ibn
 al-Haytham appears in their work as a singular occurrence in the late tenth and
 early eleventh centuries, preceded by a vacuum reaching back to Ptolemy and
 followed by another vacuum up to al-Farisi.

 In this article we shall see that this picture of history is inaccurate. I shall show
 that (1) Ibn al-Haytham was not the first to have effectively used Ptolemy's
 Optics, and consequently the dogma of a vacuum is unfounded; (2) al-Kindi was
 not the only significant figure in the history of Arabic optics before Ibn al-
 Haytham-rather, there existed a tradition of research in this field that included
 names just as prestigious; and (3) it is vital to take into account research on
 burning mirrors and instruments in order to understand not only the history of
 catoptrics at that time but also dioptrics.

 Some years ago, I discovered and began to reconstruct a treatise on burning
 instruments written around 984 by a mathematician connected with the court of
 Baghdad, Abfi Sacd al-cAlad Ibn Sahl, whose work was known to Ibn al-
 Haytham and was even sometimes copied in his own hand (see Fig. 1).6 Ibn Sahl
 not only knew Ptolemy's Optics but, as we shall see, went further than he did in
 the study of refraction.7 This treatise, On the Burning Instruments, makes Ibn
 Sahl the first mathematician known to have studied lenses and shows that in the

 4 Mustafa Nazif, Al-Hasan ibn al-Haytham, buhuithuhu wa kushuifuhu al-Basariyya, 2 vols. (Cairo:
 Univ. Cairo, Faculty of Engineering, 1943), Vol. II, sect. 227.

 5 A. I. Sabra, e.g., wrote in 1987, "It is remarkable that no one in late antiquity or in the Islamic
 world seems to have made any effective use of Ptolemy's Optics until Ibn al-Haytham": Dictionary of
 the Middle Ages (New York: Scribners, 1982-), Vol. IX (1987), p. 245.

 6 The treatise is soon to be available in Rashed, Geoommtrie et dioptrique (cit. n. 2). Ibn Sahl was at
 the full height of his activity in the second half of the tenth century; this treatise was composed
 between 983 and 985: on these dates and for a biography of Ibn Sahl see ibid. In his Discourse on
 Light Ibn al-Haytham referred explicitly to Ibn Sahl and recalled some of his ideas on the transpar-
 ency of media and refraction; see Roshdi Rashed, "Le Discours de la lumiere d'Ibn al-Haytham:

 Traduction franqaise critique," Revue d'Histoire des Sciences, 1968, 21:197-224. Ibn al-Haytham
 also copied Ibn Sahl's opuscule entitled Proof That the Celestial Sphere Is Not Completely Transpar-
 ent; see Rashed, Geome6trie et dioptrique.

 7 For the last century it could have been known, on the strength of Ibn Sahl's Proof That the
 Celestial Sphere . . ., that he undertook an examination of Book V of Ptolemy's Optics. In the
 beginning of this work we read of "a proof deduced by Ibn Sahl when he examined Ptolemy's book
 on optics, which he wanted to incorporate in the overall examination of Book V of this work." This
 opuscuie has not been studied, any more than Ibn Sahl's other optical and mathematical works;
 Eilhard Wiedemann simply mentioned its name, which he found in a catalogue of manuscripts in the
 St. Petersburg library. See Wiedemann, "Bemerkung zu dem Aufsatz von Herrn Dr. J. Baarmann:
 Abhandlung uiber das Licht von Ibn al-Haitham," Zeitschrift der Deutschen Morgenlindischen Ge-
 sellschaft, 1884, 38: 145-148.
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 466 ROSHDI RASHED

 first half of the tenth century catoptricians were actively working on refraction.
 When Ibn Sahl had completed his examination of burning mirrors, both parabolic
 and ellipsoidal, he considered hyperbolic plano-convex lenses and hyperbolic
 biconvex lenses. Moreover, he succeeded in stating Snellius's law long before
 Snellius himself, and he studied the mechanical drawing of the three conic curves.

 I am not unaware that these results may come as a surprise. They invite us to
 reexamine the history of the beginnings of anaclastics and the genesis of its con-
 cepts in a new light. Let us remember that Ibn Sahl's geometrical study of lenses
 runs parallel with that of burning mirrors and that, at its birth, anaclastics was
 the daughter of catoptrics and unconcerned with the study of conditions of vi-
 sion.

 I. IBN SAHL'S TREATISE ON BURNING INSTRUMENTS

 It has long been known that Ibn Sahl wrote on burning mirrors: libraries in both
 Damascus and Tehran contain a manuscript bearing this title. It was thought, on
 the basis of catalogue information alone, that these were two copies of one and
 the same manuscript.8 This is, however, not the case: not only do the manu-
 scripts contain different texts, but they have been found to contain no passages
 in common. In fact, each manuscript reproduces a separate section of Ibn Sahl's
 original work: that is, the Damascus manuscript contains a long fragment missing
 from the Tehran copy. The latter is much more substantial, but it is seriously
 damaged and the sheets are out of order.

 My first task was to discern the latent structure of the extant Tehran manu-
 script and find out how it was organized. This was only possible once I had
 understood the underlying plan of the whole treatise itself. It was then easy to
 rearrange the Tehran manuscript, specify its missing parts, and prove that the
 Damascus fragment was indeed one of them. I then determined where to insert it
 and filled in some other gaps. Only then was it possible to verify the overall plan
 of Ibn Sahl's treatise, provide a definitive reconstruction of what has survived,
 establish and translate the text, and comment on it as well as on all Ibn Sahl's
 extant works on optics and mathematics.

 It is now clear that we possess the major part of Ibn Sahl's treatise on burning
 instruments, and the absence of certain fragments in no way hinders comprehen-
 sion; it is quite easy to surmise what their contents were. Providentially, the
 most significant section on lenses has survived in full.

 First, let us recall the problem posed by Ibn Sahl and the various steps neces-
 sary for its solution. By thus exposing the underlying plan of his treatise, we can
 show how the treatise is organized, designate precisely what is missing, and
 undertake its final reconstruction.

 The problem Ibn Sahl tackled may be stated as follows: To burn at a given
 point A, using a distant or near luminous source, by reflection or refraction. To
 solve this problem, it is necessary to examine, on the one hand, (a) reflection and

 8 This error occurs in Fuat Sezgin's bibliographical work Geschichte des arabischen Schrifttums-
 Astronomie (Leiden: Brill, 1978), Vol. VI, p. 233. The two manuscripts are Damascus, al-Zahiriya
 MS 4871, 3 fols. (hereafter D); and Tehran, Milli MS 867, 51 fols. (hereafter T). The first is entitled Ft
 al-'Idla al-muhriqa (On the burning instrument); the second has no title, apart from the one added in
 another hand on fol. Ir: Kitdb alharrdqdt camilahu Abu Sacd al-cAld' Ibn Sahl (The book of
 burners composed by Abui Sacd al-'Ala' Ibn Sahl).
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 lens from Ibn Sahl's treatise c -
 On the Burning Instruments; _ I Figuare 1.gThes pinocove 12

 From Milli MS 867, folio 7r; .IL 4
 courtesy of Milli Library, ) - ...*
 Tehran.

 (b) refraction; and on the other hand, (c) the case where rays can be considered
 parallel and (d) the case where rays come from a point at a finite distance. By
 combination, we obtain the following: (a) and (c), which indicate a parabolic
 mirror; (a) and (d), an ellipsoidal mirror; (b) and (c), a plano-convex lens; and last
 (b) and (d), a biconvex lens. Therefore, following the introduction, Ibn Sahl's
 treatise should comprise the four chapters indicated.

 We should also remark that Ibn Sahl intended to construct these burning in-
 struments. He thus could not limit himself to a theoretical study of each curve
 but, like others studying burning mirrors, needed to explain how to draw the
 curves; consequently, each chapter should comprise two parts-one theoretical
 and one practical. And, in fact, the parts of his treatise that have survived intact
 verify these assumptions. For instance, the chapter on the hyperbola is divided
 into two sections: a study of the curve as a conic section, and the continuous
 drawing of the curve. In the first part, Ibn Sahl defines the hyperbola by the
 vertex, the axis, and the latus rectum; he examines the tangent from the bifocal
 property; and he then goes on to study the hyperboloid and the tangent plane,
 whose uniqueness he demonstrates. In the second part, he proceeds with the
 continuous drawing of the arc of a curve that is none other than a hyperbolic arc,
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 468 ROSHDI RASHED

 although he does not identify it as such, and then takes up the study of the plane

 tangent to the surface obtained by rotating this arc about a fixed straight line. In
 both parts, as we shall see, he uses the properties of the tangent to rediscover the
 laws of refraction, and thus to deduce the construction of a plano-convex lens
 and a biconvex lens.

 The preceding analysis offers us a reliable guide to reconstructing On the
 Burning Instruments. The diagram in Figure 2 indicates not only the organization

 of the work but also the state of preservation of each of its sections.
 It is easy to see where the missing section should be inserted: between the end

 of the study on the parabola and the beginning of the one on the ellipse. The
 theoretical study of the parabola has survived in full, but of the study of the
 continuous drawing of the parabolic arc we have only a fragment: we lack the
 discussion of the tangent to this arc, of the tangent plane to the paraboloid, and
 of their application to optics. And as for the section on the ellipse, the study of
 this curve as a conic section is missing, but we possess an almost complete study
 of the ellipsoidal mirror engendered by an elliptic arc obtained by a continuous
 drawing.

 It is worth emphasizing here that the structure of the treatise itself illustrates
 Ibn Sahl's new position in the history of optics: although his work continues the
 Greco-Arabic tradition of research on burning mirrors, his introduction of refrac-
 tion and lenses constitutes a break with that tradition as well.

 II. THE PARABOLIC MIRROR

 The study of the parabolic mirror had been undertaken long before Ibn Sahl by
 Diocles, Anthemius of Tralles, "Dtruims" (author of a treatise on burning mirrors
 translated into Arabic from a now-lost Greek original), the author of the Bobbio
 fragment, and al-Kindi.9 It is more than likely that Ibn Sahl was familiar not only
 with al-Kindi's treatise but with at least a fragment of Anthemius's work, as well
 as with other Greek writers. First, Ibn Sahl himself affirms that he consulted
 some Greek texts translated into Arabic. He claims, moreover, that Hellenistic
 writers dealt only with burning by reflection, and that he was the first to study
 burning by refraction. That he studied other Greek authors is also confirmed by a
 systematic comparison of his study of the parabolic mirror with theirs. Ibn Sahl,
 for example, did not adopt Diocles' method, but approximated that applied by
 "Dtruims." He also mentions the legend according to which Archimedes set fire
 to the Roman flotilla using burning mirrors. This suggests that he read the work
 of Anthemius of Tralles, who relates the legend in a fragment on burning mirrors
 that was translated into Arabic at least a century before, for it was consulted by

 9 See Diocles, Anthemius de Tralles, Didyme ... : Sur les miroirs ardents, trans. and ed. Roshdi
 Rashed (Paris: Les Belles Lettres, forthcoming); or see Johan Ludvig Heiberg, Mathematici Graeci

 Minores (Kongelige Danske Videnskabernes Selskab: Historisk-filologiske Meddelelser, 13.3) (Co-
 penhagen: Hast, 1927), pp. 77-92; and Wilbur Knorr, "The Geometry of Burning-Mirrors in Antiq-
 uity," Isis, 1983, 74:53-73). See also al-Kindi, Kitabfi al-Shucdcdt, Patna, India, Khuda Bakhsh MS
 2048. For a description of the text ascribed to "Dtruims," British Library MS 7473, see Diocles,
 Anthemius, ed. Rashed; and William Cureton, Catalogus codicum manuscriptorum orientalium qui in
 Museo Britannico asservantur, 3 vols., Vol. II (London, 1846-1871), p. 205: "Codex bombycinus in
 quarto maiori, ff. 198, extractus A.H. 639, A.D. 1242." The Arabic spelling of the name, as well as the
 presence of a fragment attributed to Didymus, precludes the first name's being an alteration of the
 second.
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 [uStudy of the parabola Introduction as a conic section
 (incomplete) // (complete)

 Distant source: __ _
 parabolic mirror j Continuous drawing

 L a_______ of the parabola
 (incomplete)

 Reflection

 ._ Study of the ellipse

 \ 1 j as a conic section
 Near source: J (lost)
 ellipsoidal mirror

 Continuous drawing
 of the ellipse
 (almost complete)

 Study of the hyperbola
 as a conic section

 (complete)

 Distant source: 1

 plano-convex lens Continuous drawing
 (hyperboloid) \ of the hyperbola

 [ (complete)

 Refraction

 Near source:

 biconvex lens
 (complete)

 Figure 2. The structure of On the Burning Instruments.

 al-Kindi. This conjecture is supported by the fact that Anthemius's text is the
 only one on burning mirrors translated from Greek into Arabic that examines the
 ellipsoidal mirror, and it is precisely the study of this mirror that Ibn Sahl re-
 sumes.10 Ibn Sahl's study differs from these earlier texts and thus merits close
 examination.

 The parabola as a conic section

 Ibn Sahl used the following steps when determining how to burn at a given dis-
 tance using sunlight.1"

 10 For Ibn Sahl's claims see T, fol. lv. On Ibn Sahl's study of the parabolic mirror see Diocks,
 Anthemius, ed. Rashed; see also the end of this subsection. The Arabic version of Anthemius, pre-
 viously considered lost, has now been found, and an edition with translation is to be published in
 Diocles, Anthemius.

 11 D, fol. 81r.
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 470 ROSHDI RASHED

 Let AB be this distance and AC the direction of solar rays (Fig. 3). Sup-

 pose AC perpendicular to AB, and set AC = AB/2. Draw CD I AC, such

 that CD * AC = AB2. The parabola of vertex C, with axis AC and latus
 rectum equal to the distance CD, passes through B.

 Consider arc BE on this parabola in the opposite direction to C. If we
 rotate arc BE about the fixed straight line AC, B describes a circular arc BF,
 and E describes a circular arc EG. We thus delimit a portion of the parabo-

 loid EBFG, written (BG).

 L

 C

 B
 A

 K

 Figure 3. This and the following line figures reproduce
 those of Ibn Sahl, with corrections as necessary.

 PROPOSITION. Rays parallel to AC falling on surface (BG), supposed reflec-
 tive, are reflected to point A.

 To demonstrate this proposition, Ibn Sahl starts by discussing the tangent
 plane at point H and the uniqueness of the tangent plane.

 Let H be a point on (BG); plane ACH cuts (BG) along arc IJ, a parabolic
 arc equal to arc BE. Let K be the orthogonal projection of H on AC, and let
 L be a point on AC, such that CL = CK; then line LH is tangent to arc IJ.
 The plane that passes through line LH and is perpendicular to plane AHC is
 tangent to surface (BG) at H.

 By reductio ad absurdum Ibn Sahl shows that this plane cannot cut surface
 (BG) at point H, and then that the plane tangent to H is unique.

 In stage two Ibn Sahl discusses the reflection of a ray of light parallel to the
 axis.
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 IBN SAHL'S PIONEERING TREATISE 471

 Let HX be the ray falling at H, and M a point on the prolongation of LH;
 we must show that -MHX = <AHL.

 We have

 CD -AC = AB2 = 4AC2, hence CD = 4AC.

 On the other hand, H is on the paraboloid, hence

 HK2 = CD - KC + 4AC KC.

 We deduce from the above that

 AH2 = AK2 + 4AC * KC = AK2 + 4AC2 + 4AC * AK
 = (AK +2AC)2 = AL2,

 and consequently

 <AHL = <ALH.

 But as HXI/AL, we have -<ALH = <MHX, hence <MHX = 4AHL. The
 ray XH falling at H is reflected to point A.

 Ibn Sahl then considers the case where AC is not perpendicular to AB.

 Figure 4 D Figure 5

 D

 F E F E

 A

 Draw the perpendicular to AC from B; let C be the foot of this line; and
 draw a length AD = AB on line AC. There are two possibilities: C and D on
 either side of A (Fig. 4), and C and D on the same side of A (Fig. 5). Let E be
 the midpoint of CD, and EF the perpendicular to CD, such that EF * CE =
 BC2. The parabola of vertex E, with axis AE and latus rectum equal to the
 distance EF, therefore passes through B.
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 472 ROSHDI RASHED

 We consider arc BG on this parabola, and the portion of the paraboloid
 (BI) obtained by rotation about AC. If this portion of the paraboloid is re-
 flective, any ray parallel to AC, falling at a point on this surface, is reflected
 to point A.

 To demonstrate the proposition in both these cases, Ibn Sahl wants to arrive at
 the preceding case. It therefore suffices to show that A is the focus of the parab-
 ola-that is, that EA = 14EF. He proceeds as follows:

 We have

 EF * CE = BC2, and AB2 = AC2 + BC2 = AC2 + EF CE.

 But if we consider both possibilities, we can have

 AD = 2EC - AC, and AE = EC - AC (Fig. 3),

 or

 AD = 2EC + AC, and AE = EC + AC (Fig. 4).

 We therefore have

 AD2 = AC2 + 4EC2 + 4EC AC = AC2 + 4EC(EC + AC)
 = AC2 + 4EC * AE.

 We deduce that EC * EF = 4EC * AE, and hence EF = 4AE.
 Thus point A lies at a distance from vertex E of the parabola equal to a

 quarter of the latus rectum. Therefore, as in the first case, any ray parallel to
 the axis falling on mirror (BI) is reflected to point A.

 Ibn Sahl has thus shown that in all three cases-<BAC = 7rd2, <BAC <7r/2,
 and <BAC > 7r/2-rays parallel to the axis are reflected to point A on the axis
 whose distance from the vertex is a quarter of the latus rectum.

 We note that in his demonstration Ibn Sahl resorts to the fundamental rela-
 tion, the symptoma, of the parabola, and to the property of the vertex of a
 parabola, which is to be the midpoint of the subtangent, in considering the three
 cases. As mentioned earlier, this approach differs from that of Diocles, who
 stated the same proposition by resorting to the fact that the subnormal is equal to
 the parameter-without using the symptoma. In the Greek text translated into
 Arabic and attributed to "Dtruims," on the other hand, the author used the same

 auxiliary propositions as Ibn Sahl to demonstrate the same main property, but his
 starting point was different: instead of starting, like Ibn Sahl, with the focus to
 establish the equality of the angles, he started with this equality to determine the
 focus. Ibn Sahl's approach bears the closest resemblance to that followed in the
 Bobbio fragment, but there is no indication that the latter text was translated into
 Arabic. Moreover, it appears that Ibn Sahl was the first, so far as we know, to
 examine the problem of the uniqueness of the tangent plane.

 If we compare Ibn Sahl's study with that of Ibn al-Haytham's On the Burning
 Parabolic Mirror, we encounter the same proposition and the same demonstra-
 tion, even if the latter's exposition is somewhat improved and proceeds by "anal-
 ysis" and "synthesis." 12

 12 The points made in n. 6 also show that Ibn al-Haytham was acquainted with Ibn Sahl's treatise
 and followed the same method.
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 IBN SAHL'S PIONEERING TREATISE 473

 Drawing the parabola

 Ibn Sahl then proceeds with the continuous drawing of the parabola, using the
 focus and the directrix.13

 Take a fixed point A, a fixed straight line DF, and a length DE = 1 pro-
 duced on the perpendicular at DF. Let AC be the perpendicular drawn to DF
 from A; A and E lie on either side of DF, and DE > AC (Fig. 6).

 F/ H E

 x S

 m~~~~~
 z M B

 0 0~~~~~~~~~

 Figure 6. Ibn Sahl's device for drawing parabolas.

 Ibn Sahl explains the construction of three points that belong to the parabola of
 focus A and whose directrix is line EH parallel to DF. (Note that at this point he
 does not name the parabola.)

 Situate points F and B on DE, and I on GH, a segment perpendicular to
 DF, such that their locations satisfy the equalities

 AF = 1, BE = BA, and IH = IA,

 and consequently

 BD + BA = IG + IA = FA = 1. (1)

 Points C, D, G, and F follow one another in this order on DF. We prove by
 reductio ad absurdum that AI > AB.

 Draw a semicircle with center A and diameter JK, with JK - AB, and two
 circles with centers B and I, respectively, all with the same radius. The
 hypothesis JK S AB implies that JK < AI; therefore circles (A) and (B) on
 the one hand, and (A) and (1) on the other, do not intersect each other.
 Construct PU tangent to both (A) and (B), and MN tangent to (B) and per-
 pendicular to DF. We deduce that

 13 T, fols. 14-17.
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 474 ROSHDI RASHED

 PU = AB, MN = BD, and PK = UM.

 The outline JPUMN therefore has a length s1.

 Call the semiperimeter of one of the circles p; we have

 SI - JP + PU + UM + MN = 1 + p.

 Using the same procedure, we associate outline JWZQR with circle (1),
 and we have

 S2= JW + WZ + ZQ + QR = 1 + p.

 The procedure used by Ibn Sahl to arrive at a continuous drawing is deduced

 from the equality s1 = S2, which results from equality (1).

 Take a rigid set-square, and let one of its right-angle sides, NO, slide along
 DF, while the other side, NS, is applied to NM; NS is chosen greater than

 NM. Point A is fixed, as is semicircle (A). Circle (B) is mobile and in contact
 with a belt of length I + p, one of whose ends is attached at J on semicircle
 (A) and the other at N on the set-square. We suppose the belt inelastic.

 If we push on circle (B) while keeping the belt taut, with circle (B) remain-
 ing in contact with side NS of the set-square, the latter slides along line DF,
 which functions as a rail. A stylus placed at point B draws a parabolic arc BI.

 Note that point B can be displaced to either side of its starting position: as
 far as the vertex of the parabola on one side, and until the mobile circle (B) is
 tangent to line DF on the other side.

 The last part of this study on the continuous drawing of the parabola, unfortu-
 nately lost, must have included-as the other chapters lead us to suppose-a
 study of the tangent to a point of the arc Bljust constructed, the tangent plane to
 the surface engendered by this arc, and lastly, the reflection of a light ray on this
 surface. This lost study also would have aimed at verifying that the mirror so
 constructed-by the focus and the directrix-is indeed a parabolic mirror. In the
 tenth century, at least for Ibn Sahl, the focus-directrix property did not yet define
 the parabola as a geometrical locus of points.14

 III. THE ELLIPSOIDAL MIRROR

 The only known work on the ellipsoidal mirror prior to that of Ibn Sahl is a
 preliminary study by Anthemius of Tralles, in which he used the bifocal property
 of the ellipse and affirmed, without further explanation, that by virtue of the laws
 of reflection, a ray from one focus is reflected toward the second focus. Anthe-
 mius also invoked the procedure known as the "gardener's method" for the con-
 tinuous drawing of the ellipse.15 It seems highly likely, as I have observed, that
 Ibn Sahl was acquainted with the Arabic version of Anthemius's work. How-
 ever, as noted earlier, the section of his text on the study of the ellipse as a conic
 section is lost; only the passage on the continuous drawing of the ellipse has
 survived.

 14 See Rashed, Geometrie et dioptrique (cit. n. 2).
 15 Heiberg, Mathematici Graeci Minores (cit. n. 9); and Thomas L. Heath, "The Fragment of

 Anthemius on Burning Mirrors and the 'Fragmentum mathematicum Bobiense,' " Bibliotheca Math-
 ematica, 3rd Ser., 1906/7, 7:225-233.
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 Drawing the ellipse

 To draw an elliptic arc, Ibn Sahl starts with three nonaligned points, A, B, and C,
 such that AB < AC < BC (Fig. 7).16

 Place point D on line CB, such that CB + BA = CD = 1. On a circle with

 center C and radius I place point E such that <ACB < <ACE - <CAB, B
 and E being on the same side of the line CA; and place point F on segment
 CE such that AF = EF. We therefore have FA + FC = 1. Hence, points B
 and F belong to the ellipse of focuses A and C with circle (C, 1) as a directrix
 circle.

 A * M Figure 7. Ibn Sahl's
 device for drawing

 H ellipses.

 Just as in the case of the parabola, Ibn Sahl does not name the ellipse when he
 sets out the method for the continuous drawing of arc BF thus defined.

 From the hypotheses made for the construction of F it follows that AF >
 AB, an inequality that can be proved by reductio ad absurdum, and conse-
 quently CF < CB. It also follows that CF - AB.17

 Draw two parallel, equal segments, GH and IJ, with centers A and C,
 respectively-IJ = GH < AB-and draw circles (A), (C), (B), and (F), of
 radius ?12GH, with centers A, C, B, and F, respectively. The hypothesis GH
 < AB entails that these circles taken in pairs do not intersect each other.

 If MN is a tangent common to (A) and (B), and KL a tangent common to
 (B) and (C), we have

 16 T, fols. 13, 2. F B
 17 Let there be an ellipse of focuses A and C, /

 with major axis B,B2. If B describes arc B,FB2,
 distance AB increases from AB, to AB2, and con- B I A B1
 sequently CB decreases: 2 X

 <ACF > <ACB -AF > AB
 <ACF < :CAB -CF AB
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 MN = AB and KL = BC, whence MN + KL = 1.

 On the other hand, AM//BN, BK//CL, AH//CJ implies HM + NK + LJ =p,
 the perimeter of one of the circles. The outline HMNKLJ, of length s1, is
 associated with circle (B):

 s, = HM + MN + NK + KL + LJ = 1 + p.

 Similarly, draw UQ tangent to both (A) and (F), and PO tangent to (F) and

 (C). With circle F we associate the outline HUQPOJ, whose length is

 S2= HU + UQ + QP + PO + OJ.

 We have, as above,

 UQ + PO AF + FC =1, and HU + PQ + OJ = p;

 therefore

 S2 = 1 P = S

 To draw the curve Ibn Sahl imagined a device consisting of three circles with
 the same radius, functioning as pulleys, and a belt with a constant length 1 + p.
 Two of the circles are fixed, with centers A and C; the third, with center B, is
 mobile. The belt, with one end fixed to circle (A) at H, and the other to circle (C)
 at J, revolves around pulley B (Fig. 8). If we push on circle (B) while keeping the
 belt taut, center B describes an elliptic arc BF.

 Figure 8. Another device
 for drawing ellipses.

 Ellipsoidal reflection

 While the theoretical study of the ellipse as a conic section has been lost, that of
 the reflection on an ellipsoidal mirror has been preserved in its entirety, unlike
 the case for the parabola. Starting with the bifocal property, Ibn Sahl wants to
 show that rays falling on one of two focuses are reflected to the other focus and
 may therefore burn.18

 By rotating arc BF about line AC we engender a surface (BX), B describ-
 ing a circular arc BG, and F, a circular arc FX. It can be shown that light
 rays from C are reflected to A.

 Let T be any point on arc BF; it is associated with a circle (T) and with an
 outline of length s. Circle (F) corresponds to a position of circle (B), and
 therefore we have s = s1; we deduce that TA + TC = BA + BC (Fig. 9).

 Let I' be any point on (BX); plane AI'C cuts (BX) along arc BaO', a posi-
 tion of arc FB; we therefore have I'A + I'C = BA + BC (Fig. 10). If we

 18 T, fols. 2-5.
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 prolong CI' by length I'Bb = I'A, the bisector BJ'Bd of <AI'Bb is tangent to
 arc BaO' at I'.

 Ibn Sahl proves this, and the uniqueness of the tangent, reasoning by the ab-
 surd.

 The plane drawn along line BjBd and perpendicular to plane ACI', is tan-
 gent to surface (BX) at point I'; this tangent plane is unique.

 Ibn Sahl also proves by the absurd that lines Al' and CI' do not meet surface
 (BX) other than at point I'. The ray from a luminous body along CI' is reflected
 by mirror (BX) along I'A, according to the laws of reflection. This applies to all
 points on surface (BX).

 Figure 10

 Bd

 C A

 IV. THE PLANO-CONVEX LENS

 In the second part of his treatise, Ibn Sahl is quite naturally led to prove that the
 hyperbola is an anaclastic curve, and consequently to elaborate the first geomet-
 ric theory of lenses. This section, which has survived in full, starts with the first
 stage of the law of refraction.
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 The hyperbola as a conic section: The law of refraction.

 Ibn Sahl first considers refraction on a plane surface. Defining GF as the plane
 surface of a piece of crystal of homogenous transparency, he emphasizes a rela-
 tion that is the reciprocal of the refractive index n of this crystal in relation to
 air. 19

 Let DC be a light ray in the crystal, which is refracted (Fig. 11; see also
 Fig. 1) in the air along CE. The perpendicular to the plane surface GF at G
 intersects line CD at H and the refracted ray at E.

 The ratio CEICH < 1, which Ibn Sahl uses throughout his study, is the recipro-
 cal of n:

 Let i1 and i2 be the angles formed by CD and CE, respectively, with the
 normal; we have

 CE CE CG sin i1 1

 CH CG CH sin i2 n

 Let I be a point on segment CH such that CI - CE, and let point J be the
 middle of IH. We have CIICH = 1/n. Therefore C, I, J, H characterize the
 crystal for any refraction.

 This result of considerable importance, encountered here for the first time,
 enabled Ibn Sahl to utilize the law of inverse return in the case of refraction,
 which is essential for the study of biconvex lenses, as we shall see later.

 Constructing the lens

 To construct a lens allowing burning at a finite distance by parallel rays, Ibn Sahl
 considers a lens whose substance has the same index of refraction n as the crys-
 tal just studied.

 Let A, B, K, and L be points on a straight line, reproducing a division
 similar to C, J, I, H-that is, such that

 AB = CI and BL = BK;
 AB CJ

 we have therefore

 AK CE 1

 AL CH n

 Then let M be on AB such that AM = BK, and place N such that BN is
 perpendicular to AB and BN BM = 4BL * LM. Consider the hyperbola
 with vertex B, axis BM, and latus rectum BN.20 By rotating arc BS of this
 hyperbola about line AB we engender a hyperbolic surface; S describes a
 circle with center 0, and we obtain a revolution solid limited by the hyper-

 19 T, fols. 5-9. Excavation of rock crystal was practiced intensively at Bassorah, according to
 al-Birtini, Al-jamdhir fT macrifat al-jawdhir (Hyderabad: Da'irat al-Mac'rif al-cOsmanyya, 1936
 [1355 A.H.]), p. 184.

 20 This hyperbola, with vertices B and M, has focuses A and L; therefore its eccentricity is e =
 MBIAL = AK/AL = 1/n. Therefore the choice of the hyperbola depends on the nature of the crystal.
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 bolic surface and circle (0, OS) (Fig. 12; see also Fig. 1). We suppose this
 solid to be made of crystal with refractive index n.

 PROPOSITION. Solar rays parallel to OB and passing through this solid are
 refracted at the hyperbolic surface, and the refracted rays converge at A.

 In fact, any ray parallel to OB falling at a point on surface (0, OS) crosses it
 without refraction and meets the hyperbolic surface either at B or at point T + B.
 In the case of point B, Ibn Sahl proves by the absurd that

 * the plane perpendicular to OB at B is tangent to the hyperboloid at B;
 * the tangent plane at B is unique; and
 * line AO meets the hyperboloid only at point B.

 He deduces that the ray propagated along OB is perpendicular to the plane tan-
 gent at B, does not undergo refraction, and arrives at A.

 In the case of point T k B (Fig. 13), Ibn Sahl shows that

 * plane BLT meets the surface of the lens along the hyperbola VBW of axis BM
 and focuses A and L;

 * the bisector TZ of CATL is tangent to the hyperbola at T;
 * the plane drawn along TZ, perpendicular to plane BLT, is tangent to the

 hyperbolic surface at T, and this tangent plane is unique.

 We have AT - LT = BM. Let U' be on TA, such that AU' = BM; then TU'
 = TL, TZ is the bisector of LU', and LU' is therefore perpendicular to the
 tangent plane.

 Let XT be the incident ray; XT is parallel to AL, the lines XT, TL, TZ, and
 TA all being in plane ATL which also contains the normal to the hyperboloid
 at T; the refracted ray will also be in this plane. The straight line XT cuts LZ

 at B,a; we have
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 Figure 13

 TU' A U' AK

 TBa AL AL

 But, by construction,

 AK_ CE

 AL CH'

 therefore

 TU' CE

 TBa CH

 Figure TZBaU' is therefore similar to figure CGHE; TU'A is thus the re-
 fracted ray corresponding to the incident ray XT, which passes through
 plane OS at Bb without deviation and meets the surface of the hyperboloid
 at T.

 The bundle of rays parallel to AB falling on circle (0, OS) penetrates the
 lens without deviation, and is transformed into a bundle of rays converging
 at point A.

 Drawing the hyperbola

 To effect the continuous drawing of the hyperbola, Ibn Sahl starts with the divi-
 sion (A, B, K, L), which he presented earlier, and therefore obtains AK/AL =
 lln, if n is the index of the crystal studied.21

 Let M be a point on circle (A, AK), such that <AML is obtuse, and place
 N on the straight line AM, such that <MLN = <LMN; we have therefore
 NM = NL, and NA - NL = AM = AK; N belongs to the hyperbola with
 focuses A and L and with a vertex at B.

 21 T, fols. 10-12, 17-19.
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 Figure 14 >
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 Bb -f~~~~~~~~~~~~~~~~~~~~~~~~~~~~~B

 As we have seen before, Ibn Sahl does not name the conic section at this stage.
 He wants to construct arc BN, which is none other than a hyperbolic arc. In this
 case, his approach is inspired by the procedures he has already used for the two
 other conic sections.

 Let OP be a segment with bisecting point A, perpendicular to AB, with OP
 < AB and OP < KL (Fig. 14). On the parallel to AB drawn through 0, place
 points U and X, orthogonal projections of points L and B, respectively, and
 then place V and Q, such that UV = OQ (an arbitrary length), and any
 segment UT > LN. Draw circles (A, AO) and (B, BX).

 On the perpendicular to LN at L, set U', such that LU' = LU, and draw
 the diameter of circle (A) parallel to LU'; label this diameter O'AI'. Let I'Ba
 be perpendicular to AI', with I'Ba = OQ; and on the perpendicular to LU' at
 U', let points Be, Bc, and Bd be situated such that U'Be = OQ, U'Bc = LN,
 and U'Bd = UT. At points Q, V, Ba, and Be raise equal segments perpendic-
 ular to plane ALM: QR = VW = BaBb = BeBf; therefore we have

 AL = OU = RW = I'U' = BaBe = BbBf.

 If we draw the circle with center N equal to circle (A), it is tangent to U'BC
 at Bc (since NLU'BC is a rectangle, NBC = LU' = AI'). Draw PZ tangent to
 both (A) and (B), and BgBh tangent to both (A) and (N); we have PZ = AB,
 AN = BgBh, LN = U'BC, and NS = BCBd. We will show that

 BgBh + BcBd = PZ + XT. (1)

 We have

 BgBh + BCBd = AN + NS = AK + MN + NS;

 but

 MN + NS = LS = UT = LBi,
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 Bi being the orthogonal projection of T on AB. We deduce that

 AN + NS = Bg Bh + Bc Bd = AK + LBi
 =AK + LB + BBi = AB + BBi = 1,

 and for any point on the hyperbola, we have

 AN + NS = AB + BBi.22

 But since AB = PZ and BBi = XT, equality (1) is verified. On the other
 hand,

 - _s

 BhBC = BgI' since <BgAI' = <BhNBC;

 therefore O'PBg + BhBC = 1/2 circle, and we have

 O'Bg + BgBh + BhBC + BCBd = PZ + 1/2 circle + XT = I + p, (2)

 p being the semiperimeter of one of the circles.

 Note that circles (A) and (B) do not intersect, since AB - OP. On the other
 hand, we have AN > AB, a property of the hyperbola that Ibn Sahl proves by
 the absurd; therefore AN - OP, and circles (A) and (N) do not intersect.

 Now Ibn Sahl starts with equality (2) and imagines a device for making a
 continuous drawing of the hyperbolic arc BN (Fig. 15). This device consists of a
 system of two rigid parts. The first part, associated with the fixed point A, pivots
 about this point; it is formed by the semicircle limited by diameter OP, the seg-
 ment OQ, and the segment RQ, which is perpendicular to plane LAO. The sec-
 ond part is associated with the fixed point L, about which it pivots, and is formed
 by the rigid set-square LUT and by segment VW, perpendicular to plane LUT;
 VW = QR and V is on UT, such that UV = OQ. The two parts are joined to each
 other by shaft RW, functioning as a connecting rod. Any rotation of the second
 part about L produces the same degree of rotation of the first part about A. To

 the two rigid parts Ibn Sahl then adds a mobile part consisting of circle (B)
 functioning as a pulley, and a belt fixed at P and T and turning around (B); its
 outline PZXT has a constant length I + p according to equality (2).

 If we push on circle (B), the belt remaining taut, the circle in turn pushes
 the rigid set-square TUL, which pivots about the fixed point L, pulling the
 entire rigid device, while shaft RW remains parallel to AL. The set-square
 LUT will replace LU'Bd, P will be at O', and the belt will arrive at position

 O'PBgBhBCBd, when point B is superposed on point N (Fig. 16). In this
 displacement, center B of the pulley describes arc BN.

 As point M is the intersection of line AN and circle (A, AK), we have NM
 < NK, and hence NL < NK. In triangles NBL and NBK, therefore, we have

 CLBN < CKBN, and consequently CLBN is acute. Foot Bj of the perpen-
 dicular drawn from N to AB therefore lies on the segment BLBj. We can then
 show, by the absurd, that line NBj does not meet arc BN at any point other
 than N. By rotation of the figure limited by arc BN and segments BBj and

 22 Conversely, AN + NS = AB + BBi - AN + NS - LS = AB + BBi - LBi, whence AN - NL
 = AB - BL.

 23 Note that the movement of the pulley (B) is obstructed neither by shaft RW, which lies above
 plane ALN, nor by the movement of the set-square LUT, since, according to the condition OP - KL
 stated at the beginning of the problem, the radius of the pulley is smaller than distance BL.
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 Figure 15. lbn Sahl's device for drawing hyperbolas, shown at its starting position for drawing
 a hyperbolic arc. The fine lines indicate the indeformable system; the bold lines, the belt of
 constant length.

 Q 0 T V U

 eR m /

 position B to positionB'.L

 R' '

 0'

 Figure 16. The drawing device, showing the position reached when both parts of the system
 have turned angle ca, one about point A, the other about point L. The pulley has moved from
 position B to position B'.

 NB1 about line BB1, we engender a solid and suppose it made in the crystal
 studied earlier.

 Refraction at a hyperbolic surface

 After completing the continuous drawing of the hyperbola, Ibn Sahl examines the
 anaclastic property of the curve.24 He presents the following proposition:

 PROPOSITION. Solar rays parallel to BBj, falling on surface (BJ), pass through
 this surface without deviation, and fall on the hyperbolic surface (B); they are
 then refracted to point A.

 To prove this proposition, Ibn Sahl considers on the hyperbolic surface, suc-
 cessively, point B, which is on the axis, and a point other than B. He examines
 the tangent plane and the path of the luminous rays in both cases.

 Consider point B. In plane BNL we have arc NBBi, a hyperbolic arc whose
 vertex is B (Fig. 17). Let BB,, be perpendicular to BL.

 Ibn Sahl shows by the absurd that BB,, is tangent to arc NBBi at B. He also
 shows by the absurd that no other straight line is tangent to this arc at B. He then
 considers the plane perpendicular to plane BLN through line BBO0, and shows
 that it is tangent to surface (B) at B, and that this is the only tangent plane at this

 24 T, fols. 20-25.
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 Figure 17 ? Figure 18

 point. Lastly, he shows-by the absurd-that line AL meets surface (B) only at
 point B.

 Thus sunlight is propagated along BjB in the crystal, and along BA in the
 air.

 Now consider point Cg $ B (Fig. 18). Plane BLCg cuts surface (B) along

 line ChBCi.

 Ibn Sahl shows by the absurd that the bisector CgCj of < LCgA is tangent to
 this line at Cg, and that this straight line is the only tangent to this line at Cg.
 Lastly, he shows that the plane perpendicular to plane ALCg drawn through line
 CgCj is tangent to surface (B) at point Cg.

 Let Cl be the intersection of ACg and circle (A, AK). Line LC1 meets the

 tangent at point Cj, and is perpendicular to the tangent plane at Cj. The
 parallel to AL drawn through Cg intersects plane (BJ) at CW, and line LC, at
 point C,; we have

 CgCl AC, -AK
 CgCv AL AL'

 however, by hypothesis,

 AK CE

 AL CH

 and therefore

 CgCi CE 1

 CgCv CH n

 On the other hand, Ibn Sahl shows by the absurd that Cg is the only meeting
 point of surface (B) with line CwCv and line ACg.

 Consequently, the solar ray parallel to AL, falling on plane (B) at CW,
 penetrates the crystal and is propagated along CwCg; at Cg on surface (B) it is
 refracted, and it is then propagated in the air along line CgA.

 The same is true for any solar ray falling on surface (B).
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 V. THE BICONVEX LENS

 Ibn Sahl terminates his study by constructing a lens limited by two portions of a
 hyperboloid of revolution of the same axis and composed of the same substance

 as the plano-convex lens, above.25 In his construction, he uses the result estab-
 lished in the course of his study of that lens, while admitting the principle of the
 inverse return of light. The biconvex lens constructed here consists of two
 plano-convex lenses joined together.

 As above, Ibn Sahl considers a division A, K, B, L on a straight line, similar to
 division C, I, J, H, which is associated with arc BM of a hyperbola with vertex B

 and focuses A and L. He considers a second division N, 0, S, P, also similar to
 C, I, J, H, associated with a hyperbola of vertex S and focuses P and N (Fig. 19;
 cf. Fig. 20).

 We have

 CI NO AK I

 CH NP AL n'

 n being the refractive index of the crystal in relation to air.
 The bisector of <AML, labeled MQ, is tangent to curve BM at M. Let R

 be on AM, such that MR = ML (therefore AR = AK); then MQ meets LR at

 X in a right angle, and therefore <LQX is acute. Similarly, the bisector of
 NUP, labeled UT, is tangent to curve SU, and <PTU is acute. Therefore
 lines MQ and TU meet each other; let this be at point V.

 Curve BM meets line QB only at point B; it meets line QM only at point
 M, and it meets line TV at only one point, labeled W. Curve SU meets line
 TV only at point U; it meets curve BW at point Z.

 If we fix line BS and pivot the surface limited by arcs BZ and ZS and line
 BS about it, point Z describing circle ZU', we obtain the solid BZSU'. We
 make a solid equal to this one from the same crystal previously considered.

 25 T, fols. 25-26.
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 PROPOSITION. Luminous rays proceeding from N, falling on surface ZSU',
 penetrate this solid, meet surface ZBU', and are propagated to point A; they
 burn at this point.

 Start by considering the case for point S. Line NS meets the surface of the
 luminous body at I'. Ray I'S penetrates the solid at S, is propagated along
 SB, emerges at B, and is propagated along BA.

 Then consider any point 0' 4 S. Plane BSO' intersects the surface of the

 solid along SO'Ba and BaBCB (Ba is a position of Z, arc SO'Ba a position of
 arc SZ, and arc BaBCB a position of arc ZB); we suppose O'Bc parallel to BS.
 Line NO' meets the surface of the luminous body at point Bd. The light at

 point Bd is propagated in the air along BdO', penetrates the solid at 0', is

 propagated along O'Bc, emerges at Bc, and is propagated along BcA.
 A bundle of rays emanating from point N undergoes a first refraction at

 surface S that transforms it into a cylindrical bundle; when this bundle falls
 on surface B, it is refracted a second time and is transformed into a bundle of
 rays that will converge at point A.

 VI. IBN SAHL'S CONTINUOUS DRAWING OF CONICS: THE PERFECT COMPASS

 Tenth-century mathematicians paid particular attention to the construction of
 conics by continuous drawing. For that purpose they devised certain instru-
 ments, including the perfect compass, and several wrote treatises on them.
 Among those, who composed such a treatise was al-Qfihi, whose works were
 known to Ibn Sahl, since the latter commented on one of them, a Treatise on the
 Art of the Astrolabe. Al-Qiihi affirmed that he knew of no work on the perfect
 compass by Greek geometers.26 Ibn al-Haytham also wrote such a text, for he
 refers to it in his treatise on parabolic burning mirrors, as one in which he
 showed "the determination of all conic sections by the instrumental method: how
 to determine conic sections so accurately [cald haqiqatihi] that no other more
 accurate may be achieved on the matter, as in determining the existence of a
 circle by the compass." This latter treatise is still undiscovered.27 Although some
 of these compasses have already been studied, an analysis of their interconnec-
 tions has yet to be made. I shall now consider the instruments devised by Ibn
 Sahl and endeavor to extract from their apparent complexity the idea on which
 they are based. I shall then give a brief summary of the principle of the perfect
 compass.

 Ibn Sahl's devices for the continuous drawing of the three conic sections each

 26 See Franz Woepcke, "Trois traites arabes sur le compas parfait," Notices et extraits des manu-
 scrits de la Bibliotheque Imperiale et autres bibliotheques, n.d., Vol. XXII, Part 1, pp. 68, 145. For
 al-Qiihl's treatise on the astrolabe and Ibn Sahl's commentary see Rashed, Geome'trie et dioptrique
 (cit. n. 2).

 27 Ibn al-Haytham, Ff al-maraya al-muhriqa bi al-qut'c (On burning mirrors by conic sections), p.
 11; translated into Latin by Gerard of Cremona as Liber de speculis comburentibus. The Latin text,
 with a German translation of the Arabic text, was published by Johan Ludvig Heiberg and Eilhard
 Wiedemann, "Ibn al-Haitams Schrift uber parabolische Hohlspiegel," Bibl. Math., 3rd Ser., 1910/11,
 10:193-208. On the role of the text for our understanding of conics in Latin science see Marshall
 Clagett, Archimedes in the Middle Ages (Philadelphia: American Philosophical Society, 1980), Vol.
 IV, pp. 13-18. An English translation also exists by H. J. Winter and Walid cArafat: "Ibn al-Haitham
 on the Paraboloidal Focusing Mirrors," Journal of the Royal Asiatic Society of Bengal, 3rd Ser.
 (Science), 1949, 15:25-40.
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 have, as we have seen, two components: one rigid, the other flexible though of
 constant length (see Figs. 6, 14, 15, and 16). The flexible component consists of a
 cord or belt that turns about a mobile circle, acting as a pulley, whose function is
 to prevent the breaking of the cord while facilitating the movement of the mobile
 part. If the center of this circle is equipped with a stylus it will draw the arc of the
 curve studied.

 For each of the three conic sections, which we will consider in turn, it is a
 property of the focus that is important.

 The parabola

 Let there be a parabola with focus F, and a straight line A perpendicular to
 the axis that cuts the parabola at points A and B (Fig. 21). For every point M
 on arc AB with projection H on A, we have

 MF + MH = 1, and AF = BF = 1, (1)

 1 being the distance from A to the directrix D. We have, on the other hand,

 MF= MH'. (2)
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 D H

 Figure 21

 Ibn Sahl, like his predecessors, did not name the directrix; however, his dem-
 onstration uses the two above equalities and the transition from one to the other.

 If we examine the device conceived for the continuous drawing of the parab-
 ola, we note that it is based on the first equality. The only difference between this
 device and the one using a cord of length 1 fixed at F and at vertex H of a
 set-square is the use of a pulley. A pencil that tightens the cord at M draws a
 parabolic arc when the set-square slides along A: this is the instrument Ibn Sahl
 imagined for drawing the parabola.

 The ellipse

 Ibn Sahl uses the property that enables us to determine the locus of a point M the
 sum of whose distances between two fixed points F and F' is equal to a constant
 magnitude I-that is,

 MF + MF' = I;

 F and F' are the two focuses of the ellipse, and l is the length of the major axis.
 The device that Ibn Sahl proposes differs from the well-known "gardener's
 method" only in the use of pulleys, of which two are fixed and one is mobile (see
 Fig. 22).

 The hyperbola

 Let there be a hyperbola with focuses F and F', whose transverse axis has
 a length 2a. Any point M on the branch that surrounds point F is character-
 ized by

 MF'-MF= 2a.

 Let S be a point on the prolongation of FM (Fig. 23); we have

 (SM + MF') - SF = 2a.

 Given these relations, it is possible to imagine a device for the continuous

 drawing of a hyperbolic arc:

 Consider a ruler that pivots about focus F, and a cord attached at one end
 to focus F' and at the other end to point S on the ruler. If the distance
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 M~~~~~~~~~~~~~~~~~~~~~~~~

 FF F

 Figure 22 Figure 23

 between the two points F and S on the ruler is FS = 1, we take a piece of
 cord of length 1' = 1 + 2a. We keep the cord taut with the help of a pencil
 resting at M on the ruler: the pencil point draws arc MB when the ruler
 pivots about F.

 Now let us turn to the device imagined by Ibn Sahl for drawing the hyperbola,
 which evolved precisely from the idea we have just set forth. He uses two pul-
 leys of the same radius-one with a fixed center, the other with a mobile center
 -on which the cord or belt of invariable length rests.

 Ibn Sahl must have been acquainted with existing contemporary works on the
 perfect compass-I referred earlier to his commentary on the Treatise on the Art
 of the Astrolabe by al-Quhil, author of a treatise on the perfect compass. Al-
 Quhl's instrument consists of three articulated parts (Fig. 24): part MN, called
 the base of the compass, corresponds to axis V of the conic; part LP, called the
 axis of the compass, corresponds to the axis of the cone. Line segment RQP,
 called the drawing pen, revolves about line PL; its length is variable, which
 enables pen point R to remain in contact with plane n during rotation, and thus to
 draw the conic section.

 The perfect compass therefore draws a conic section if we know, for example,
 the latus rectum, a diameter, and the angle formed by this diameter and the
 conjugate direction. However, this drawing requires preliminary constructions to

 p ~~~~~~~~~~~~~~A

 M N

 L p

 Figure 24. Al-QOhT's perfect compass and the corresponding cone.
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 determine the two angles, a and ,B, of the perfect compass (which are equal in the

 case of the parabola). Ibn Sahl may indeed have proposed his method in order to
 dispense with such lengthy and complicated preliminary constructions. This con-

 jecture seems plausible, but here as elsewhere Ibn Sahl does not reveal his inten-
 tions.

 As to whether the method that Ibn Sahl used to construct conic sections sur-
 vived, I suggest that it did, on the following evidence. As already noted, Ibn
 Sahl's successor Ibn al-Haytham, in his work on the parabolic mirror, mentioned
 a treatise he had composed on the construction of conic sections "using the

 instrumental method" (bi-tariq al-:dla). He wrote: "As for the way to determine
 the parabola and other conic sections using the instrumental method, this was
 mentioned by a group of geometers, even if they did not determine it exactly

 [cala haqiqatihi]"9 ;28 this last phrase suggests that Ibn al-Haytham had perfected
 the method himself. I suspect that among this "group of geometers," he had been
 thinking first and foremost of Ibn Sahl.

 VII. CONCLUDING REMARKS

 As we have seen, it was the study of burning mirrors that led Ibn Sahl to the first
 investigations on anaclastics; and his mastery of the theory of conics, as revealed
 not only in this treatise but also in his mathematical work analyzed elsewhere,

 made the birth of this chapter possible. Just as in research on burning mirrors, in
 anaclastics one proceeds by applying geometric structures, notably supplied by
 the theory of conics, to certain luminous phenomena so as to achieve the practi-
 cal goal aimed at from the beginning: burning. The constructed object-whether
 mirror or lens-must therefore conform to the geometric structure applied. Some
 would say today, and justifiably so, that it is a matter of constructing models with
 the aid of mathematics to achieve a practical end: that of burning from a distant
 or near source. In this respect, the only differences between the new chapter on
 anaclastics and the much older one on burning mirrors are the complexity of the
 phenomena studied and the subtlety of the mathematical structures employed.

 Consequently, renewed interest in the study of refraction in the tenth century
 is fully justified: for the first time since Ptolemy's Optics, real progress was
 made in the knowledge of refraction. Ibn Sahl, who read and commented on the
 Alexandrian writer, knew that the incident ray and the refracted ray lie on a
 plane containing the normal, on either side of it. Similarly, he knew the principle
 of inverse return. To this he added the ratio he discovered, equivalent to Snel-
 lius's law as the latter would later formulate it: as noted, he introduced the ratio
 of the refracted ray to the distance of the image at the point of incidence (CEICH
 throughout his study) as a constant ratio for two given media. Even if he did not
 state the law explicitly, it underlies all of his research on lenses, and his contri-
 bution is of the utmost importance. (Ibn Sahl's discretion in this matter is appar-
 ently not fortuitous: it would seem due to the absence of inquiry into the physical
 causes of refraction-that is to say, to the lack of any attempt to justify this mode
 of propagating light.)

 The discovery of this treatise by Ibn Sahl compels us to consider the connec-

 28 Ibn al-Haytham, Majmfic al-Rasdail (Hyderabad: Da'irat al-Macarif al-cOsmanyya, 1938 [1357
 A.H.]), p. 11.
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 tions between Ibn al-Haytham and his predecessor, and thus it enables us to
 place more exactly in its historical context a contribution that historians readily
 qualify as revolutionary. If we confine ourselves to the study of lenses alone, we
 observe that Ibn Sahl considers only rays parallel to the axis and obtains the
 convergence of all refracted rays at a single point on the axis. Let us remark that,
 for Ibn Sahl, the notion of focus of a conic ceases to be connected simply with
 reflection; it is henceforth linked to refraction as well.

 Nonetheless, it remains true that Ibn Sahl's sole intention was burning and his
 study is purely geometric. At no time does any kind of experimentation whatso-
 ever intervene as part of his proof. Because he only wanted to burn, he confined
 himself to the conception and construction of a geometric model that would help
 to construct the mold of the lens. As a result he refined and advanced geometric
 study; the practical value and effectiveness of the model were to be tested when
 the model was eventually used. But when attention is paid to the problems raised
 by the image of an object observed through the lens, the situation becomes quite
 different; in this case it is impossible to avoid difficulties such as astigmatism and
 aberration. Such problems, unimagined in Ibn Sahl's treatise, would arise in the
 work of Ibn al-Haytham, who would be led to redefine the relationships between
 conditions for vision and conditions of light and its propagation, between sight
 and illumination.

 It would have been surprising for such a major contribution to the history of
 optics, remarkable for its time, to remain without an heir. And it would be
 equally surprising if earlier important works had not paved the way for a work as
 revolutionary as that of Ibn al-Haytham. We know that Ibn al-Haytham was in
 fact acquainted with Ibn Sahl's writings and with the treatise reconstructed here.
 His achievement was to consolidate this chapter on anaclastics while expanding
 its scope-but that is the topic of another study.29 For the time being, let me
 simply stress that through our recently acquired knowledge of Ibn Sahl's contri-
 bution, we are now in a position to assess more precisely Ibn al-Haytham's
 contribution to anaclastics and his work on optics in general.

 In conclusion, let me note the insufficiently emphasized impact of the study of
 optical instruments-mirrors and lenses-on the interest in geometric construc-
 tions in the tenth and eleventh centuries. The search for mechanical means of

 constructing conic sections was related to research in optics, just as the construc-
 tion of the perfect compass during the same period was related to research in
 astronomy, and in particular to the construction of astrolabes and sundials.

 29 See Rashed, Geometrie et dioptrique (cit. n. 2).
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